暗能量将对宇宙的未来产生巨大的影响。克劳斯曾经和美国华盛顿天主教大学(Case Western Reserve University)的宇宙学家格伦·斯塔克曼(Glenn Starkman)一起,合作探讨了这样一个问题:在一个包含宇宙学常数的宇宙中,生命的最终命运将会如何。结论是:不太乐观。这样一个宇宙将演变成一个非常不适宜生存的地方。宇宙学常数会产生一个固定的“事件视界”(event horizon),在这种假想边界以外,任何辐射或物质都不可能被我们看到。宇宙看起来就像一个内外颠倒的黑洞,物质和辐射不断被吸出视界,然后永不回头。这一发现意味着,可观测宇宙包含的信息是有限的,因此生命和信息处理过程都不可能永久持续下去。
不过,用不着担心有限的信息可能会带来麻烦,在信息极限成为问题之前很久,所有随着宇宙一起膨胀的物质就会被推到事件视界以外。美国哈佛大学的亚伯拉罕·洛布(Abraham Loeb)和长峰健太郎(Kentaro Nagamine)研究了这一过程。他们发现,我们所说的“本星系群”(Local Group of galaxies,由银河系、仙女座星系和许多围绕它们旋转的矮星系构成)将坍缩成一个巨大的超星系。所有其他的星系都将消失在事件视界以外。这个过程将历时1000亿年,看起来也许很长,但与永恒的荒芜相比,也只不过是转瞬之间而已。
第一个支柱是爱因斯坦的广义相对论。在它出现之前的近300年里,牛顿理论一直是天文学几乎所有分支的基础。从地球到星系,不论在什么尺度下,牛顿理论都能准确预言物体的运动状态。但是,对于无穷大的物质集合,牛顿理论就完全不适用了。广义相对论突破了这个局限。1916年,爱因斯坦公布了广义相对论,并且提出了一个包含宇宙学常数的简单方程,用来描述宇宙。此后不久,荷兰物理学家威廉·德西特(Willem de Sitter)就求出了方程的一个解。德西特的结果似乎与当时人们公认的宇宙图景完全一致:宇宙是被广袤且永恒不变的虚空包围着的一座宇宙岛。
炽热的早期宇宙还是核聚变的理想场所,这是大爆炸理论的最后一个观测支柱。当宇宙温度高达10亿到100亿K时,较轻的原子核能够聚变为较重的原子核,这个过程被称为“大爆炸核合成”(big bang nucleosynthesis)。随着宇宙的膨胀,温度会迅速下降,因此核合成只能持续短短几分钟,聚变也只能发生在最轻的几种元素之间。宇宙中的大部分氦和氘都是在那个时候形成的。天文学家对宇宙中氦和氘丰度的测量结果,与大爆炸核合成的理论预言吻合。核合成还准确预言了宇宙中质子和中子的丰度,为大爆炸理论提供了进一步的证据。